U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 102001 - 102010 of 107353 results

Bepridil is a calcium channel blocker that has well characterized anti-anginal properties and known but poorly characterized type 1 anti-arrhythmic and anti-hypertensive properties. It has inhibitory effects on both the slow calcium and fast sodium inward currents in myocardial and vascular smooth muscle, interferes with calcium binding to calmodulin, and blocks both voltage and receptor operated calcium channels. It is used to treat hypertension (high blood pressure), angina (chest pain), sustained atrial fibrillation and tachyarrhythmia. The most common side effects were upper gastrointestinal complaints (nausea, dyspepsia or GI distress), diarrhea, dizziness, asthenia and nervousness. Certain drugs could increase the likelihood of potentially serious adverse effects with bepridil hydrochloride. In general, these are drugs that have one or more pharmacologic activities similar to bepridil hydrochloride, including anti-arrhythmic agents such as quinidine and procainamide, cardiac glycosides and tricyclic anti-depressants. Anti-arrhythmics and tricyclic anti-depressants could exaggerate the prolongation of the QT interval observed with bepridil hydrochloride. Cardiac glycosides could exaggerate the depression of AV nodal conduction observed with bepridil hydrochloride.
Status:
US Previously Marketed
First approved in 1990

Class (Stereo):
CHEMICAL (ACHIRAL)



Moricizine is an antiarrhythmic agent previously marketed as Ethmozine. It was used for prophylaxis and treatment of serious and life-threatening ventricular arrhythmias. In 2007 it was withdrawn and discontinued for commercial reasons. Moricizine can be administered intravenously but was more commonly provided as an oral formulation.
Bepridil is a calcium channel blocker that has well characterized anti-anginal properties and known but poorly characterized type 1 anti-arrhythmic and anti-hypertensive properties. It has inhibitory effects on both the slow calcium and fast sodium inward currents in myocardial and vascular smooth muscle, interferes with calcium binding to calmodulin, and blocks both voltage and receptor operated calcium channels. It is used to treat hypertension (high blood pressure), angina (chest pain), sustained atrial fibrillation and tachyarrhythmia. The most common side effects were upper gastrointestinal complaints (nausea, dyspepsia or GI distress), diarrhea, dizziness, asthenia and nervousness. Certain drugs could increase the likelihood of potentially serious adverse effects with bepridil hydrochloride. In general, these are drugs that have one or more pharmacologic activities similar to bepridil hydrochloride, including anti-arrhythmic agents such as quinidine and procainamide, cardiac glycosides and tricyclic anti-depressants. Anti-arrhythmics and tricyclic anti-depressants could exaggerate the prolongation of the QT interval observed with bepridil hydrochloride. Cardiac glycosides could exaggerate the depression of AV nodal conduction observed with bepridil hydrochloride.
Levamisole (the trade name Ergamisol), an anthelminthic drug with immunological properties. It also has antitumor activity when administered with 5-fluorouracil in patients with Duke's C colorectal carcinoma; however, this use was discontinued. The mechanism of the antitumor effect is unknown but has been postulated to be related to levamisole's immunomodulatory properties. Levamisole can stimulate antibody formation to various antigens, enhance T-cell responses by stimulating T-cell activation and proliferation, potentiate monocyte and macrophage functions including phagocytosis, chemotaxis and increases motility, adherence, and chemotaxis. Levamisole inhibits alkaline phosphatase and possesses cholinergic activity. The mechanism of action of levamisole as an antiparasitic agent, for example, to treat ascariasis, relates to its agonistic activity to L-subtype nicotinic acetylcholine receptors in nematode muscles. In addition, levamisole was studied for preventing relapses of the steroid-sensitive idiopathic nephrotic syndrome (SSINS). It was shown, that alone or in combination with steroids, the drug can prolong the time to relapse and prevented recurrence during one year of treatment. However, these studies also were also discontinued.
Cefmetazole is a semisynthetic cephamycin antibiotic. It has a broad spectrum of activity comparable to that of the second-generation cephalosporins, covering gram-positive, gram-negative, and anaerobic bacteria. Its bactericidal action results from inhibition of cell wall synthesis. It effectively treats abdominal and respiratory tract infections, pelvic inflammatory disease, urinary tract infections, skin and soft tissue infections and used for surgical prophylaxis, reducing or eliminating signs and symptoms of infection. Cefmetazole has a low frequency of adverse effects, and a side effect profile similar to that of other cephamycins. Adverse effects following overdosage have included nausea, vomiting, epigastric distress, diarrhea, and convulsions.
Pinacidil is a clinically effective vasodilator used for the treatment of hypertension.
Status:
US Previously Marketed
Source:
CEFPIRAMIDE SODIUM by WYETH AYERST
(1989)
Source URL:
First approved in 1989

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cefpiramide or SM-1652 (sodium 7-[D(-)-alpha-(4-hydroxy-6-methylpyridine-3-carboxamido)-alpha-(4-hydroxyphenyl)acetamido]-3-[(1-methyl-1H-tetrazol-5-yl) thiomethyl]-3-cephem-4-carboxylate) is a semisynthetic cephalosporin derivative with a broad spectrum of antibacterial activity. This antibiotic has been reported to have potent in vitro and in vivo antibacterial activities against gram-positive and -negative bacteria.
Status:
US Previously Marketed
First approved in 1989

Class (Stereo):
CHEMICAL (ACHIRAL)



Indecainide, an antiarrhythmic agent classified as type IC. Class IC drugs greatly depress intracardiac conduction and are the most potent antiarrhythmic compounds able to suppress ventricular premature beats. Indecainide was used under brand name decabid for the treatment of life-threatening dysrhythmias and sustained ventricular tachycardia. However, that usage was discontinued. Indecainide have mediated the pharmacological actions through a blocking of Na+-channel.
Status:
US Previously Marketed
Source:
21 CFR 310.545(a)(12)(iv)(A) laxative:stimulant laxative calcium pantothenate
Source URL:
First approved in 1988
Source:
Dialyvite by Atlantic Biologicals Corps.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
US Previously Marketed
First approved in 1988

Class (Stereo):
CHEMICAL (ABSOLUTE)



Pergolide is a long-acting dopamine agonist approved in 1982 for the treatment of Parkinson’s Disease. It is an ergot derivative that acts on the dopamine D2 and D3, alpha2- and alpha1-adrenergic, and 5-hydroxytryptamine (5-HT) receptors. It was indicated as adjunct therapy with levodopa/carbidopa in the symptomatic treatment of parkinsonian syndrome. It was later found that pergolide increased the risk of cardiac valvulopathy. The drug was withdrawn from the US market in March 2007 and from the Canadian market in August 2007. Pergolide stimulates centrally-located dopaminergic receptors resulting in a number of pharmacologic effects. Five dopamine receptor types from two dopaminergic subfamilies have been identified. The dopaminergic D1 receptor subfamily consists of D1 and D5 subreceptors and are associated with dyskinesias. The dopaminergic D2 receptor subfamily consists of D2, D3 and D4 subreceptors and has been associated with improvement of symptoms of movement disorders. Thus, agonist activity specific for D2 subfamily receptors, primarily D2 and D3 receptor subtypes, are the primary targets of dopaminergic antiparkinsonian agents. It is thought that postsynaptic D2 stimulation is primarily responsible for the antiparkinsonian effect of dopamine agonists, while presynaptic D2 stimulation confers neuroprotective effects. This semisynthetic ergot derivative exhibits potent agonist activity on dopamine D2- and D3-receptors. It also exhibits agonist activity on dopamine D4, D1, and D5, 5-hydroxytryptamine (5-HT)1A, 5-HT1B, 5-HT1D, 5-HT2A, 5-HT2B, 5-HT2C, α2A-, α2B-, α2C-, α1A-, α1B-, and α1D-adrenergic receptors. Parkinsonian Syndrome manifests when approximately 80% of dopaminergic activity in the nigrostriatal pathway of the brain is lost. As this striatum is involved in modulating the intensity of coordinated muscle activity (e.g. movement, balance, walking), loss of activity may result in dystonia (acute muscle contraction), Parkinsonism (including symptoms of bradykinesia, tremor, rigidity, and flattened affect), akathesia (inner restlessness), tardive dyskinesia (involuntary muscle movements usually associated with long-term loss of dopaminergic activity), and neuroleptic malignant syndrome, which manifests when complete blockage of nigrostriatal dopamine occurs. High dopaminergic activity in the mesolimbic pathway of the brain causes hallucinations and delusions; these side effects of dopamine agonists are manifestations seen in patients with schizophrenia who have overractivity in this area of the brain. The hallucinogenic side effects of dopamine agonists may also be due to 5-HT2A agonism. The tuberoinfundibular pathway of the brain originates in the hypothalamus and terminates in the pituitary gland. In this pathway, dopamine inhibits lactotrophs in anterior pituitary from secreting prolactin. Increased dopaminergic activity in the tuberoinfundibular pathway inhibits prolactin secretion. Pergolide also causes transient increases in somatotropin (growth hormone) secretion and decreases in luteinizing hormone (LH) concentrations. Pergolide is not available for use by humans in the United States, but approved for veterinary use; it was used in various other countries for the treatment of various conditions including Parkinson's disease, hyperprolactinemia, and restless leg syndrome. Pergolide in Europe was indicated for Parkinson's disease only when other dopaminergic agonist treatments had failed, and treatment had to be initiated by a neurologist. The label warned against using doses of more than 5mg a day, whether alone or in combination with levodopa. However the marketing of this drug finally stopped in France in May 2011 and sales elsewhere in Europe ceased eventually.

Showing 102001 - 102010 of 107353 results